Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Pillow OEM for wellness brands Thailand

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Cushion insole OEM solution Indonesia

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Latex pillow OEM production in Vietnam

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Memory foam pillow OEM factory China

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.ESG-compliant OEM manufacturer in Taiwan

Researchers have discovered that mutation of a neuronal gene can have a positive effect: higher IQ in humans. Researchers found that a gene mutation linked to blindness can also increase intelligence. When genes mutate, it can result in severe diseases of the human nervous system. Neuroscientists at Leipzig University and the University of Würzburg have now used fruit flies to demonstrate how, apart from the negative effect, the mutation of a neuronal gene can have a positive effect – namely higher IQ in humans. They have published their findings in the prestigious journal Brain. Synapses are the contact points in the brain via which nerve cells ‘talk’ to one another. Disruptions in this communication lead to nervous system diseases, since altered synaptic proteins, for example, can impair this complex molecular mechanism. This can cause mild symptoms, but also very severe disabilities in those affected. Mutation Linked to Above-Average Intelligence The interest of the two neurobiologists Professor Tobias Langenhan and Professor Manfred Heckmann, from Leipzig and Würzburg respectively, was aroused when they read in a scientific publication about a mutation that damages a synaptic protein. At first, the affected patients attracted scientists’ attention because the mutation caused them to go blind. However, doctors then noticed that the patients were also of above-average intelligence. “It’s very rare for a mutation to lead to improvement rather than loss of function,” says Langenhan, professor and holder of a chair at the Rudolf Schönheimer Institute of Biochemistry at the Faculty of Medicine. Research on fruit flies helps to better understand diseases of the human nervous system. Credit: Swen Reichhold/Leipzig University The two neurobiologists from Leipzig and Würzburg have been using fruit flies to analyze synaptic functions for many years. “Our research project was designed to insert the patients’ mutation into the corresponding gene in the fly and use techniques such as electrophysiology to test what then happens to the synapses. It was our assumption that the mutation makes patients so clever because it improves communication between the neurons which involve the injured protein,” explains Langenhan. “Of course, you can’t conduct these measurements on the synapses in the brains of human patients. You have to use animal models for that.” “75 percent of genes that cause diseases in humans also exist in fruit flies” First, the scientists, together with researchers from Oxford, showed that the fly protein called RIM looks molecularly identical to that of humans. This was essential in order to be able to study the changes in the human brain in the fly. In the next step, the neurobiologists inserted mutations into the fly genome that looked exactly as they did in the diseased people. They then took electrophysiological measurements of synaptic activity. “We actually observed that the animals with the mutation showed a much increased transmission of information at the synapses. This amazing effect on the fly synapses is probably found in the same or a similar way in human patients, and could explain their increased cognitive performance, but also their blindness,” concludes Professor Langenhan. Prof. Tobias Langenhan in his laboratory at the Rudolf Schönheimer Institute for Biochemistry. Credit: Swen Reichhold Molecular Insights into Enhanced Synaptic Transmission The scientists also found out how the increased transmission at the synapses occurs: the molecular components in the transmitting nerve cell that trigger the synaptic impulses move closer together as a result of the mutation effect and lead to increased release of neurotransmitters. A novel method, super-resolution microscopy, was one of the techniques used in the study. “This gives us a tool to look at and even count individual molecules and confirms that the molecules in the firing cell are closer together than they normally are,” says Professor Langenhan, who was also assisted in the study by Professor Hartmut Schmidt’s research group from the Carl Ludwig Institute in Leipzig. “The project beautifully demonstrates how an extraordinary model animal like the fruit fly can be used to gain a very deep understanding of human brain disease. The animals are genetically highly similar to humans. It is estimated that 75 percent of the genes involving disease in humans are also found in the fruit fly,” explains Professor Langenhan, pointing to further research on the topic at the Faculty of Medicine: “We have started several joint projects with human geneticists, pathologists and the team of the Integrated Research and Treatment Center (IFB) AdiposityDiseases; based at Leipzig University Hospital, they are studying developmental brain disorders, the development of malignant tumors and obesity. Here, too, we will insert disease-causing mutations into the fruit fly to replicate and better understand human disease.” Reference: “The human cognition-enhancing CORD7 mutation increases active zone number and synaptic release” by Mila M. Paul, Sven Dannhäuser, Lydia Morris, Achmed Mrestani, Martha Hübsch, Jennifer Gehring, Georgios N. Hatzopoulos, Martin Pauli, Genevieve M. Auger, Grit Bornschein, Nicole Scholz, Dmitrij Ljaschenko, Martin Müller, Markus Sauer, Hartmut Schmidt, Robert J. Kittel, Aaron DiAntonio, Ioannis Vakonakis, Manfred Heckmann and Tobias Langenhan, 12 January 2022, Brain. DOI: 10.1093/brain/awac011

Light microscope images of E. coli cells in transmitted light (left) and reflected light that picks up the red fluorescence of a dye staining the cells’ DNA (right). In normal cells (upper panel), the DNA is spread throughout the cells. But in cells expressing the aberrant plant protein identified in this study (bottom panel) all the DNA within each cell has collapsed into a dense mass. DNA condensation also occurs after bacteria have been treated with aminoglycoside antibiotics. Credit: Brookhaven National Laboratory Discovery of an aberrant protein that kills bacterial cells could help unravel the mechanism of certain antibiotics and point the way to new drugs. An aberrant protein that’s deadly to bacteria has been discovered by biologists from the U.S. Department of Energy’s Brookhaven National Laboratory and their collaborators. In a paper that will be published today (April 29, 2022) in the journal PLOS ONE, the scientists describe how this erroneously built protein mimics the action of aminoglycosides, a class of antibiotics. The newly found protein could serve as a model for scientists to decipher the specifics of those medications’ lethal impact on bacteria—and possibly point the way to future antibiotics. “Identifying new targets in bacteria and alternative strategies to control bacterial growth is going to become increasingly important,” said Brookhaven biologist Paul Freimuth, who led the research. Bacteria are becoming resistant to several routinely used antibiotics, and many scientists and clinicians are concerned about the possibility of large-scale epidemics caused by these antibiotic-resistant bacteria, he explained. “What we’ve discovered is a long way from becoming a drug, but the first step is to understand the mechanism,” Freimuth said. “We’ve identified a single protein that mimics the effect of a complex mixture of aberrant proteins made when bacteria are treated with aminoglycosides. That gives us a way to study the mechanism that kills the bacterial cells. Then maybe a new family of inhibitors could be developed to do the same thing.” Following an Interesting Branch The Brookhaven scientists, who normally focus on energy-related research, weren’t thinking about human health when they began this project. They were using E. coli bacteria to study genes involved in building plant cell walls. That research could help scientists learn how to convert plant matter (biomass) into biofuels more efficiently. Brookhaven Lab biologist Paul Freimuth and co-author Feiyue Teng, a scientist in Brookhaven Lab’s Center for Functional Nanomaterials (CFN), at the light microscope used to image bacteria in this study. Credit: Brookhaven National Laboratory But when they turned on expression of one particular plant gene, enabling the bacteria to make the protein, the cells stopped growing immediately. “This protein had an acutely toxic effect on the cells. All the cells died within minutes of turning on expression of this gene,” Freimuth said. Understanding the basis for this rapid inhibition of cell growth made an ideal research project for summer interns working in Freimuth’s lab. “Interns could run experiments and see the effects within a single day,” he said. And maybe they could help figure out why a plant protein would cause such dramatic damage. Misread Code, Unfolded Proteins “That’s when it really started to get interesting,” Freimuth said. The group discovered that the toxic factor wasn’t a plant protein at all. It was a strand of amino acids, the building blocks of proteins, that made no sense. This nonsense strand had been churned out by mistake when the bacteria’s ribosomes (the cells’ protein-making machinery) translated the letters that make up the genetic code “out of phase.” Instead of reading the code in chunks of three letters that code for a particular amino acid, the ribosome read only the second two letters of one chunk plus the first letter of the next triplet. That resulted in putting the wrong amino acids in place. “It would be like reading a sentence starting at the middle of each word and joining it to the first half of the next word to produce a string of gibberish,” Freimuth said. The gibberish protein reminded Freimuth of a class of antibiotics called aminoglycosides. These antibiotics force ribosomes to make similar “phasing” mistakes and other sorts of errors when building proteins. The result: all the bacteria’s ribosomes make gibberish proteins. “If a bacterial cell has 50,000 ribosomes, each one churning out a different aberrant protein, does the toxic effect result from one specific aberrant protein or from a combination of many? This question emerged decades ago and had never been resolved,” Freimuth said. According to the current findings, just a single aberrant protein can be sufficient for the toxic effect. That wouldn’t be too farfetched. Nonsense strands of amino acids can’t fold up properly to become fully functional. Although misfolded proteins get produced in all cells by chance errors, they usually are detected and eliminated completely by “quality control” machinery in healthy cells. Breakdown of quality control systems could make aberrant proteins accumulate, causing disease. Messed-Up Quality Control The next step was to find out if the aberrant plant protein could activate the bacterial cells’ quality control system—or somehow block that system from working. Freimuth and his team found that the aberrant plant protein indeed activated the initial step in protein quality control, but that later stages of the process directly required for degradation of aberrant proteins were blocked. They also discovered that the difference between cell life and death was dependent on the rate at which the aberrant protein was produced. “When cells contained many copies of the gene coding for the aberrant plant protein, the quality control machinery detected the protein but was unable to fully degrade it,” Freimuth said. “When we reduced the number of gene copies, however, the quality control machinery was able to eliminate the toxic protein and the cells survived.” The same thing happens, he noted, in cells treated with sublethal doses of aminoglycoside antibiotics. “The quality control response was strongly activated, but the cells still were able to continue to grow,” he said. Model for Mechanism These experiments indicated that the single aberrant plant protein killed cells by the same mechanism as the complex mixture of aberrant proteins induced by aminoglycoside antibiotics. But the precise mechanism of cell death is still a mystery. “The good news is that now we have a single protein, with a known amino acid sequence, that we can use as a model to explore that mechanism,” Freimuth said. Scientists know that cells treated with the antibiotics become leaky, allowing toxic levels of things like salts to seep in. One hypothesis is that the misfolded proteins might form new channels in cellular membranes, or alternatively jam open the gates of existing channels, allowing diffusion of salts and other toxic substances across the cell membrane. “A next step would be to determine structures of our protein in complex with membrane channels, to investigate how the protein might inhibit normal channel function,” Freimuth said. That would help advance understanding of how the aberrant proteins induced by aminoglycoside antibiotics kill bacterial cells—and could inform the design of new drugs to trigger the same or similar effects. Reference: “A polypeptide model for toxic aberrant proteins induced by aminoglycoside antibiotics” by Mangala Tawde, Abdelaziz Bior, Michael Feiss, Feiyue Teng and Paul Freimuth, 29 April 2022, PLOS ONE. DOI: 10.1371/journal.pone.0258794 This work was supported by a Laboratory Directed Research and Development award from Brookhaven Lab and in part by the DOE Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Visiting Faculty Program (VFP). Additional funding from the National Science Foundation (NSF) supported students participating in internships under NSF’s Science, Technology, Engineering, and Mathematics Talent Expansion Program (STEP) and the Louis Stokes Alliances for Minority Participation (LSAMP) program.

Researchers discovered that phages, bacterial parasites, play a key role in driving rapid bacterial evolution, leading to the emergence of treatment-resistant “superbugs.” For the first time ever, researchers from the University of Pittsburgh School of Medicine discovered that phages — tiny viruses that attack bacteria — are key to initiating rapid bacterial evolution leading to the emergence of treatment-resistant “superbugs.” The findings were published today in Science Advances. The researchers showed that, contrary to a dominant theory in the field of evolutionary microbiology, the process of adaptation and diversification in bacterial colonies doesn’t start from a homogenous clonal population. They were shocked to discover that the cause of much of the early adaptation wasn’t random point mutations. Instead, they found that phages, which we normally think of as bacterial parasites, are what gave the winning strains the evolutionary advantage early on. “Essentially, a parasite became a weapon,” said senior author Vaughn Cooper, Ph.D., professor of microbiology and molecular genetics at Pitt. “Phages endowed the victors with the means of winning. What killed off more sensitive bugs gave the advantage to others.” Professor of microbiology and molecular genetics, University of Pittsburgh School of Medicine. Credit: Vaughn Cooper When it comes to bacteria, a careful observer can track evolution in the span of a few days. Because of how quickly bacteria grow, it only takes days for bacterial strains to acquire new traits or develop resistance to antimicrobial drugs. The researchers liken the way bacterial infections present in the clinic to a movie played from the middle. Just as late-arriving moviegoers struggle to mentally reconstruct events that led to a scene unfolding in front of their eyes, physicians are forced to make treatment decisions based on a static snapshot of when a patient presents at a hospital. And just like at a movie theater, there is no way to rewind the film and check if their guess about the plot or the origin of the infection was right or wrong. The new study shows that bacterial and phage evolution often go hand in hand, especially in the early stages of bacterial infection. This is a multilayered process in which phages and bacteria are joined in a chaotic dance, constantly interacting and co-evolving. When the scientists tracked changes in genetic sequences of six bacterial strains in a skin wound infection in pigs, they found that jumping of phages from one bacterial host to another was rampant — even clones that didn’t gain an evolutionary advantage had phages incorporated in their genomes. Most clones had more than one phage integrated in their genetic material — often there were two, three or even four phages in one bug. “It showed us just how much phages interact with one another and with new hosts,” said Cooper. “Characterizing diversity in early bacterial infections can allow us to reconstruct history and retrace complex paths of evolution to a clinical advantage. And, with growing interest in using phages to treat highly resistant infections, we are learning how to harness their potency for good.” Reference: “Rampant prophage movement among transient competitors drives rapid adaptation during infection” by Christopher W. Marshall, Erin S. Gloag, Christina Lim, Daniel J. Wozniak and Vaughn S. Cooper, 16 July 2021, Science Advances. DOI: 10.1126/sciadv.abh1489 Other authors of the study include Christopher Marshall, Ph.D., and Christina Lim, Ph.D., of Marquette University; and Erin Gloag, Ph.D., and Daniel Wozniak, Ph.D., of The Ohio State University. This work was supported by National Institutes of Health grants R01AI134895, R01AI143916, U01AI124302 and R33HL137077, and the American Heart Association Career Development Award (19CDA34630005).

DVDV1551RTWW78V

 


Pillow ODM design and manufacturing company in Taiwan 》a manufacturing partner you can rely on for quality and deliveryTaiwan OEM insole and pillow supplier 》seamless coordination from idea to finished productChina foot care insole ODM expert 》trusted by DTC and B2B brands alike

文章標籤
全站熱搜
創作者介紹
創作者 me769bx8 的頭像
me769bx8

兒童足弓鞋墊品牌門市

me769bx8 發表在 痞客邦 留言(0) 人氣(0)